佳學基因遺傳病基因檢測機構排名,三甲醫(yī)院的選擇

基因檢測就找佳學基因!

熱門搜索
  • 癲癇
  • 精神分裂癥
  • 魚鱗病
  • 白癜風
  • 唇腭裂
  • 多指并指
  • 特發(fā)性震顫
  • 白化病
  • 色素失禁癥
  • 狐臭
  • 斜視
  • 視網(wǎng)膜色素變性
  • 脊髓小腦萎縮
  • 軟骨發(fā)育不全
  • 血友病

客服電話

4001601189

在線咨詢

CONSULTATION

一鍵分享

CLICK SHARING

返回頂部

BACK TO TOP

分享基因科技,實現(xiàn)人人健康!
×
查病因,阻遺傳,哪里干?佳學基因正確有效服務好! 靶向用藥怎么搞,佳學基因測基因,優(yōu)化療效 風險基因哪里測,佳學基因
當前位置:????致電4001601189! > 檢測產(chǎn)品 > 遺傳病 > 神經(jīng)科 >

【佳學基因檢測】癲癇基因檢測與遺傳咨詢

【佳學基因檢測】癲癇基因檢測與遺傳咨詢 3.1 In General Although genetic testing has never been more widely available for patients and families with epilepsies than nowadays, many ethical and psychosocial issues surround genetic testi

佳學基因檢測】癲癇基因檢測與遺傳咨詢

癲癇基因檢測遺傳咨詢導讀:

盡管基因檢測從未像現(xiàn)在這樣廣泛應用于癲癇的患者和家庭成員。但佳學基因認為,開始檢測之前,應考慮許多關于癲癇基因檢測社會、倫理、心理問題。每種基因檢測,包括單基因測序、染色體微陣列基因檢測、基因檢測包、醫(yī)學全外顯子、全外顯子組或全基因組測序基因檢測——都有各自需要考慮的因素。由訓練有素的遺傳學專業(yè)人員提供的遺傳咨詢有助于患者和家庭應對這些復雜、必需考慮的因素。關于遺傳咨詢對癲癇患者及其家庭成員的影響,一般受檢者知之甚少。但是在其他病的基因檢測中,正確的遺傳咨詢已被證明在基因檢測及疾病知識普及、正確理解疾病風險、減少不同形式的焦慮方面具有很大的幫助作用。國際抗癲癇聯(lián)盟(ILAE)建議將遺傳咨詢作為所有嬰兒癲癇發(fā)作患者、Dravet綜合征和其他嬰兒癲癇性腦病的遺傳評估的基本內(nèi)容。同樣地,最近制定的智力和發(fā)育殘疾成年人癲癇治療建議將基因檢測作為該患者群體治療的標準組成部分。盡管有這些建議,基因檢測及遺傳咨詢服務在臨床神經(jīng)病學實踐中的應用往往不一致,到目前為止,臨床醫(yī)生沒有正式的實踐指南可供依賴。最近對美國神經(jīng)學家的一項調(diào)查發(fā)現(xiàn),大多數(shù)接受調(diào)查的兒童神經(jīng)學家會要求對一名18歲的嬰兒痙攣史患者進行診斷性基因檢測,該病發(fā)展為Lennox-Gastaut綜合征。然而,大多數(shù)接受調(diào)查的成年神經(jīng)學家表示,他們不會為同一個假想患者安排診斷性基因檢測。這種差異突出了為癲癇患者提供基因檢測及遺傳服務的不一致性。

遺傳咨詢對癲癇患者有幾個好處。首先,基因咨詢可以幫助個人和家庭在對基因檢測和遺傳風險充分了解后做出基于知識和最新科技進步的決定,也就是基因檢測的知情決定。其次,它有助于了解基因檢測的可能結果以及這些結果對診斷和治療的意義。第三,它有助于個人了解未來子女和其他家庭成員的再次發(fā)生這種病的風險,并幫助患者從基因檢測中找到任何次要或意外的發(fā)現(xiàn)。第四,它可以使患者接受更為正確的治療。佳學基因分享一些遺傳性癲癇的例子以及常見的、已建立的和/或與遺傳咨詢和臨床診斷與治療相關的潛在基因。

癲癇基因檢測中出現(xiàn)的意義不確定、意義未明的變異和新基因

(VUS)是一種對于檢測機構、臨床醫(yī)生來說,其致病性和在疾病中的作用尚不清楚。在臨床基因檢測采用下一代測序技術(NGS)之前,由于基因檢測只涉及到已知的意義明確的基因位點,意義未明的基因變異位點(VUS)相對少見。但現(xiàn)在大約有10%的癲癇患者進行了全外顯子組測序,所檢測的位點及其變異大多數(shù)沒有在基因檢測數(shù)據(jù)庫列出。即使采用癲癇基因檢測包進行基因檢測,這是一種為了降低檢測價格,大幅度減少檢測范圍的一種基因檢測,在采用數(shù)據(jù)庫比對而不是基因解碼技術進行分析的機構中,也會有高達40%的基因檢測報告出具的是意義未明基因檢測結果(VUS)。根據(jù)美國醫(yī)學遺傳學和基因組學學院(ACMG),基因檢測結果是臨床意義未明時,不能用于指導臨床診斷和治療的決策依據(jù)。在基因檢測后,獲得提是臨床意義未明的結果,可能會引起患者、家庭成員和臨床醫(yī)生的焦慮,因為他們在解釋基因檢測結果方面經(jīng)驗較少。遺傳咨詢,最好在基因檢測前后提供,可以幫助患者和家屬為可能的臨床意義未明的結果做心理準備,并了解不同性質(zhì)的變異結果可能意味著什么和它不意味著什么。值得指出的是盡管基因解碼技術被認為是一種可以大幅度提升檢測陽性率、降低意義未明結果的新型基因密碼破解技術。它在數(shù)據(jù)庫比對的基礎上,增加了基于結構與功能的分析方法,原則上可以檢出一部分未報道的新型變異,但是也仍有一部分意義未明的基因檢測報告。因此,不管采用什么基因檢測技術和分析技術,在檢測前進行遺傳咨詢都是有幫助的。

如果在癲癇患者中沒有發(fā)現(xiàn)致病基因突變,只發(fā)現(xiàn)了意義未明的突變,則在其他家庭成員(通常是父母雙方)中檢測該基因突變的存在有可能有助于進一步評估該變異的致病性。對于與嚴重、早發(fā)常染色體顯性或X連鎖癲癇綜合征相關的基因變異,父母測試可能會確認該變異是新發(fā)的,這意味著在父母中找不到該變異,并提供了該變異具有致病性的額外證據(jù)。然而,如果顯示該變異是從健康的父母那里遺傳的,則該變異可能被認為不太可能導致疾病。對于與常染色體隱性遺傳疾病來說的兩個雜合或者是純合變異,對父母進行測試助于確定變異產(chǎn)生的方式和時間。對于家族性癲癇,在其他家族成員中進行基因檢測可以明確被標記為意義未明的基因突變是否在家族內(nèi)存在疾病表現(xiàn)與基因型存在共分離的現(xiàn)象。在基因解碼中這種具有更高分析能力的基因科技術,臨床表型和基因型的共分離現(xiàn)象是數(shù)據(jù)庫比對之處的另一種收集基因突變是否具有致病性的證據(jù)。

此外,全外顯子組或全基因組測序可以確定沒有明確或尚未建立的基因-疾病關系的基因序列,即所謂的新基因或候選基因。這些檢測結果在以數(shù)據(jù)庫比對基礎分析方法的檢測機構中也會被標記為意義不確定的結果。這些結果由于通常不用于臨床決策,但也可能給患者、家屬和臨床醫(yī)生帶來相當大的不確定感覺。為了進一步研究基因與疾病關聯(lián)證據(jù)有限的基因突變的致病性,通常需要進行額外的研究,包括對具有相似臨床癥狀的患者時行致病基因鑒定、對其他家族成員進行基因檢測,以為基因表型和癥狀的分訑收集證據(jù)。

癲癇基因檢測與癲癇的反復風險評估

遺傳咨詢還可以幫助癲癇患者家庭了解未來兒童和其他家庭成員的反復風險。許多嚴重的早發(fā)性癲癇,包括癲癇性腦病,都是新發(fā)突變的結果。在這種情況下,父母不含有導致癲癇發(fā)生的基因突變,因此遺傳到其他家庭成員的分險極低。通常,對于已確認的新發(fā)變異,未來妊娠也就是生育下一胎再次罹患同樣疾病的風險<1%。然而,先進的基因的基因檢測機構,采用改進的下一代測序技術,在沒有出現(xiàn)疾病表征的、或者只受影響的父母中,能夠鑒別出存在具有新發(fā)突變的性腺或體細胞鑲嵌,這大大增加了下一胎疾病風險的靈敏度。根據(jù)《癲癇疾病發(fā)生的遺傳變異多樣性》,“遺傳鑲嵌”是指由具有不同基因型的細胞組成的細胞群體。曾在遺傳鑲嵌的個體,所有器官或者是某些器官變異型和野生型細胞的混合而成的。如果變異率低,由于致病性基因突變細胞未包含基因檢測所使用的細胞或組織類型中,采用血液DNA測序可能會錯過存在的突變。在這些情況下,可能需要對頭發(fā)、皮膚或唾液等其他組織進行測序?;蚪獯a做的研究發(fā)現(xiàn),Dravet綜合征患者中大約10%的SCN1A新變突變實際上是父母的體細胞鑲嵌。在這些情況下,無法提供正確的關于后代是否反復的判斷,但可能接近50%。新出現(xiàn)的數(shù)據(jù)也表明,盡管大多數(shù)嚴重早發(fā)性癲癇是散發(fā)性的,但在一些較大的患者系列中,高達20%的基因解碼分析確認癲癇性腦病為常染色體隱性遺傳。如果沒有基因解碼、基因檢測的指導并采用可干預的生育方式,再生育的每一個孩子的反復風險25%。

癲癇基因檢測額外發(fā)現(xiàn)

隨著診斷性全外顯子組和基因組測序在臨床實踐中變得越來越普遍,通過診斷性基因測試在一些患者中發(fā)現(xiàn)了更多的額外的發(fā)現(xiàn)。這些額外發(fā)現(xiàn)是與主要檢測指征無關的遺傳發(fā)現(xiàn),但對患者的健康具有醫(yī)學價值。ACMG已鑒定出59個醫(yī)學上可干預的基因,并建議基因檢測報告在這些基因中發(fā)現(xiàn)的可能致病性和/或致病性基因突變。據(jù)估計,接受全外顯子組測序并進行基因解碼分析基因檢測中,約有1-3%會有醫(yī)學上可干預的額外。建議患者在開始基因組診斷測試之前了解接收額外發(fā)現(xiàn)選項,這可能會多增加一些少量的費用。理想情況下基因檢測結構通過知情同意程序,讓患者選擇在報告中接受或不接受此類信息。此外,如果檢測是采用三人全外顯子基因檢測方案,由于全外顯子組或全基因組測序是在父母-子女三人組的基礎上進行的,因此測試可能會發(fā)現(xiàn)有關家庭關系的意外結果,基因突變的來源,甚至會發(fā)現(xiàn)或非親子關系。提出基因檢測的這種可能性通常是基因檢測開始前知情同意的一部分內(nèi)容。

癲癇基因檢測的社會心理學影響

接受基因診斷可能會改變家庭的生活。許多具有癲癇病的兒童或年輕成人的家庭已經(jīng)進行了多年的“癲癇病診斷之旅”,這可能會帶來身體上的困難、經(jīng)濟上的負擔和情感上的枯竭。盡管許多家庭對獲得基因檢測的結果后感到輕松,但接受基因診斷可能會導致內(nèi)疚、焦慮、沮喪或孤獨感。因為許多基因?qū)е碌陌d癇是罕見的疾病,可用信息有限,與具有相同診斷結果的其他家庭聯(lián)系的能力有限。此外,基因測試可能無法給出最終答案。接受全外顯子組測序基因檢測的癲癇患者中約有50-70%得到陰性結果。負面結果可能令人失望,而遺傳咨詢可以幫助家庭預測基因檢測的可能結果,并幫助他們在收到基因診斷或不確定結果后確定應對的方式。

遺傳性癲癇舉例及其基因檢測

遺傳性全身性癲癇(GGE)

兒童和青少年失神癲癇(CAE、JAE)、青少年肌陣攣性癲癇(JME)和覺醒時全身強直陣攣發(fā)作癲癇(EGMA)呈現(xiàn)出是典型的GGE臨床表征。這些癲癇亞型在發(fā)作開始時間、發(fā)作類型和腦電圖(腦電圖)形式方面有清晰的特征。如存在廣義棘波和多棘波復合形式。CAE中的失神癲癇發(fā)作通常出瑞在3至10歲之間,持續(xù)時間短,通常約10秒,每天發(fā)作高達100次。在青春期,這些患者很少出現(xiàn)全身強直陣攣發(fā)作。JAE中的失神性癲癇發(fā)作基本相似,但頻率較低,在青春期開始發(fā)病,青春期的全身強直陣攣發(fā)作更頻繁。肌陣攣性抽搐,尤其是上肢的抽搐,沒有意識喪失,是JME的臨床特征。該病也是在青春期出現(xiàn),發(fā)作通常在醒時發(fā)生,因前一晚缺少睡眠或飲酒而引引起。大約75%的患者出現(xiàn)全身強直陣攣發(fā)作。在青春期,癲癇在覺醒時出現(xiàn)全身強直陣攣發(fā)作。癲癇發(fā)作通常發(fā)生在患者醒來后兩小時內(nèi),與白天無關。在個體患者或家庭患者所有臨床綜合征會出現(xiàn)中重疊。大腦成像不明顯。

基因解碼研究表明,GGE的不同亞型的遺傳方式復雜,只有少數(shù)罕見的大家族呈現(xiàn)明顯的常染色體顯性遺傳。致病基因鑒定基因解碼在編碼GABAA受體α1亞基的基因發(fā)現(xiàn)第一個突變,引起家族性JME的發(fā)生。第二個突變在CAE患者中發(fā)現(xiàn)?;蚪獯a研究人員為了驗證致病基因突變所導致的功能性變化,當在爪蟾卵母細胞或哺乳動物細胞中表達時突變的基因序列進,α1亞基突變導致GABAA受體功能顯著喪失。這使得基因基因解碼為癲癇的基因檢測提供了堅實的證據(jù)。

《癲癇發(fā)生的遺傳學基礎》把微缺失列為GGE產(chǎn)生的風險因素之一。癲癇的致病基因鑒定基因解碼在1.0-2.5%的GGE患者發(fā)現(xiàn)染色體微缺失基因突變,這些微缺失基因突變存在于染色體15q13.3、15q11或16p13上存在微缺失。微缺失基因突變特別是在具有GGE表型和發(fā)育問題或智力殘疾的患者中比較明顯。

泛發(fā)性癲癇的另一種形式是泛發(fā)性(遺傳性)癲癇伴熱性驚厥綜合征(GEFS+)?!栋d癇的各種亞型及其基因檢測結果的異同》中GEFS+用來指兒童期發(fā)作的常染色體顯性綜合征,包括發(fā)熱性驚厥和多種非熱性癲癇發(fā)作類型,如同一家系中的全身強直陣攣發(fā)作、失神性癲癇、無張力或肌陣攣性發(fā)作性癲癇。極少病例中出現(xiàn)部分癲癇發(fā)作。有家族史,但家族成員癲癇形式可能不同。雖然GEFS+范疇內(nèi)的癲癇大多是良性的,但少數(shù)家族成員會出現(xiàn)更嚴重的癲癇癥狀和發(fā)育問題,類似于肌陣攣性無張力發(fā)作(MAE)或Dravet綜合征癲癇。這使得遺傳咨詢變得重要但困難。致病基因鑒定基因解碼在為這一類癲癇的基因檢測提供的一個基因突變位點是編碼電壓門控鈉離子通道β1亞基的SCN1B基因。這一基因缺陷是在大型GEFS+家族中發(fā)現(xiàn)的]。基因解碼研究的功能和結構解析,從而可以明確疾病的發(fā)病機理,并為新藥研究和治療提供依據(jù)。在這一類病例中,明確了致病基因編碼鈉通道α。如果只檢測SCNA1,只有10%的GEFS+患者會出陽性基因檢測結果。GGE中一種重要的、與治療相關但罕見的情況是患者出現(xiàn)葡萄糖轉運蛋白1型基因SLC2A1的突變,這一基因突變使得攜帶有突變的孩子在4歲之前出現(xiàn)開始的早發(fā)失神發(fā)作(EOAE),很少出現(xiàn)經(jīng)典CAE。

GGE患者的基因檢測:在單一家族中,該疾病組中僅描述了少數(shù)基因的明顯效應?;驒z測應包含這些基因。在多種治療效果不佳的癲癇患者,尤其應當選擇基因覆蓋范圍大的致病基因鑒定基因解碼。如果發(fā)現(xiàn)患者是因為SLC2A1突變而引起,可以從生酮飲食中獲益。而如果基因檢測發(fā)現(xiàn)是SCN1A突變引起的,則應避免使用鈉通道阻滯劑。陣列CGH可以檢測患者是否存在染色體微缺突變,在于存在智力殘疾的患者,尤其應當考慮這一檢測方案。

遺傳性局灶性癲癇

兒童早期的家族性癲癇包括良性家族性新生兒、嬰兒-新生兒和嬰兒癲癇綜合征(BFNS、BFNIS、BFIS)。它們的特點是在出生后的頭幾天或幾個月內(nèi),直到一歲,發(fā)作叢生,在數(shù)周到數(shù)月后自發(fā)消失。癲癇發(fā)作可能表現(xiàn)為局灶性或全身性。發(fā)作間期腦電圖通常正常。罕見的發(fā)作期腦電圖記錄顯示局灶性和全身性放電。日后癲癇反復的風險約為15%。雖然精神運動發(fā)育通常是正常的,但已經(jīng)描述了越來越多的智力殘疾病例[52]。在多達50%的BFIS病例中,學齡期可能出現(xiàn)運動障礙,表現(xiàn)為陣發(fā)性運動誘發(fā)性運動障礙(PKD)。它的特點是由快速自主運動引起的非自愿短期運動障礙。這兩種疾病的組合被稱為ICCA(嬰兒驚厥和舞蹈病[53]。這兩種綜合征對不同的抗驚厥藥物都有很好的反應。KCNQ2和KCNQ3的突變已被確定為導致BFNS[9-11]KCNQ2和KCNQ3通道產(chǎn)生M電流,這是一種緩慢激活的鉀電流,可通過激活毒蕈堿乙酰膽堿受體來抑制[54]。異聚野生型和突變KCNQ2/3通道的共同表達通常顯示出產(chǎn)生的鉀電流減少約20-30%,這顯然足以引起B(yǎng)FNS[55]。編碼哺乳動物大腦中表達的電壓門控鈉通道的α-亞單位之一的SCN2A基因突變在BFNIS中發(fā)現(xiàn)[56]。第一次功能研究揭示了一些突變的小功能增益效應,預測神經(jīng)元興奮性增加[57,58]。對于BFIS、PKD和ICCA,已經(jīng)描述了兩個不同的位點。在多達80%的患者中,編碼富含脯氨酸的跨膜結構域2的PRRT2中發(fā)現(xiàn)了突變,該結構域是這些綜合征的主要基因[59]。最近,在與ICCA相關的鉀通道亞型基因SCN8A中發(fā)現(xiàn)了一種新的突變[60]。在嚴重癲癇性腦?。ㄒ娤挛模┖凸铝⑿灾橇埣瞇61]中也發(fā)現(xiàn)了SCN8A突變。在所有這些綜合征中,外顯率很高,高達80%[62,63]。

3.6.2 Genetic focal epilepsies.
Familial epilepsies in early childhood comprise the syndromes of benign familial neonatal, infantile-neonatal and infantile seizures (BFNS, BFNIS, BFIS). They are characterized by clusters of seizures in the first days or months of life, up to one year of age, resolving spontaneously after weeks to months. Seizures might present as focal or generalized. Interictal EEGs are usually normal. The rare ictal EEG recordings showed focal and generalized discharges. The risk of seizure recurrence later in life is about 15%. Although psychomotor development is usually normal, an increasing number of cases with intellectual disability has been described [52]. In up to 50% of BFIS cases a movement disorder, presenting as paroxysmal kinesigenic dyskinesia (PKD), can occur in school age. It is characterized by involuntary short lasting dyskinesias induced by fast voluntary movements. The combination of both diseases is called ICCA (infantile convulsions and choreoathetosis [53]. Both syndromes respond very well on different anticonvulsive drugs. Mutations in KCNQ2 and KCNQ3 have been identified to cause BFNS [9-11]. KCNQ2 and KCNQ3 channels give rise to the M-current, a slowly activating potassium current which can be suppressed by the activation of muscarinic acetylcholine receptors [54]. Co-expression of heteromeric wild type and mutant KCNQ2/3 channels usually revealed a reduction of the resulting potassium current of about 20-30% which is apparently sufficient to cause BFNS [55]. Mutations in the SCN2A gene encoding one of the α-subunits of voltage-gated sodium channels expressed in mammalian brain are found in BFNIS [56]. The first functional investigations revealed small gain-of-function effects of some mutations predicting an increased neuronal excitability [57,58]. For BFIS, PKD and ICCA, two different loci have been described. In up to 80% of patients, mutations were found in PRRT2 coding for the proline-rich transmembrane domain 2 which is the major gene in these syndromes [59]. Recently, a novel mutation was described in the potassium channel subtype gene SCN8A associated to ICCA [60]. Mutations in SCN8A were also found in severe epileptic encephalopathy (see below) and isolated intellectual disability [61]. In all these syndromes the penetrance is high, up to 80% [62,63].

Patients with mutations in DEPDC5 (Dep domain-containing protein 5) present with a broad spectrum of focal epilepsy syndromes spanning from benign Rolandic epilepsy [64] up to the severe familial focal epilepsy with variable foci (FFEVF). DEPDC5 is part of the GATOR1 complex which acts as an inhibitor of the mTORC1 complex [65,66]. mTORC1 regulates several cellular functions like cell growth, migration and proliferation [67]. In the last years, mutations were found in several genes relevant in the mTOR signaling pathway associated to focal cortical dysplasias which frequently lead to focal epilepsies. Mutations were found in DEPDC5, MTOR, NPRL2/3, PIK3CA and TSC1/TSC2 as germline and somatic mutations. These findings have therapeutical implications since a therapy with mTOR inhibitors (e.g. rapamycin) improve seizures in animal models and patients (for review see [68]). Rolandic epilepsy, also called benign epilepsy of childhood with centrotemporal spike (BECTS), typically presents at the age of 5-6 years with nocturnal focal seizures of the face and vocal tract [69]. It is considered benign since the epilepsy resolves with puberty and most patients show normal psychomotor development. FFEVF is characterized by focal seizures arising from different cortical areas combined with intellectual disability. The onset ranges from infancy to adulthood [70,71]. Mesial (familial mesial temporal lobe epilepsy, FMTLE) [72] or lateral temporal lobe epilepsy (autosomal dominant epilepsy with auditory features, ADLTE) [73] can also be associated to DEPDC5 mutations as well as ADNFLE (autosomal dominant nocturnal frontal lobe epilepsy, see below). FMTLE and ADLTE syndromes are characterized by onset in infancy up to adulthood and benign outcome. In addition to germline mutations of DEPDC5 resulting in these familial epilepsy syndromes, somatic mutations in DEPDC5 as well as other genes of the mTOR pathway were identified in brain specimens of focal cortical dysplasias [73].
The first mutations described for ADLTE were found in LGI1 which was initially described as a tumor gene [74]. LGI1 is important in the regulation of postnatal glutamatergic synapse development and can therefore indirectly influence synaptic processing [75]. Up to 50% of patients with ADLTE are positive for alterations in this gene [76].
For ADNFLE, a first mutation was identified in CHRNA4 encoding the α4-subunit of a neuronal nicotinic acetylcholine receptor (nAChR) as the first ion channel mutation found in an inherited form of epilepsy [7]. Later, mutations in the CHRNB2 gene encoding the β2- subunit of neuronal nAChR and CHRNA2, encoding the nAChR α2-subunit were detected [77,78]. All these mutations reside in the pore-forming M2 transmembrane segments. Different effects on gating of heteromeric α4β2 channels leading either to a gain-of-function or a loss-of-function were reported when most of the known mutations were functionally expressed in Xenopus oocytes or human embryonic kidney (HEK) cells. The exact pathomechanism is not fully understood, but an increased acetylcholine sensitivity could be the main common gating defect of the mutations [77,78]. Only 5-10% of families are positive for nAChR subtypes [79].
Genetic testing in focal epilepsy patients: Genetic testing can be performed in patients with benign and early onset epilepsies belonging to the spectrum of BFNS, BFIS or BFIS since genetic confirmation of the diagnosis allows for genetic counseling, may have implications on therapeutic decisions in difficult-to-treat cases (for example more severe early-onset epilepsies with KCNQ2 or SCN2A mutations profit from sodium channel blockers [80] and prevents further unnecessary and stressful diagnostic procedures. Depending on the age of onset, sequencing of the respective genes (KCNQ2/3, SCN2A, PRRT2, better panel sequencing if possible) should be initiated. For all other forms of (familial) focal epilepsies described above, genetic variants are detected only in a small percentage of families and are even less frequent in single patients. A gene panel analysis including the above-mentioned genes might be useful as positive results would have implications for genetic counseling in families. In case of panels are not available, sequencing of LGI1 in ADTLE and DEPDC5 in various other forms of familial focal epilepsies might generate positive results.
3.6.3 Early Infantile Epileptic Encephalopathies (EIEE) and severe epilepsies of infancy. The term EIEE comprises a large group of epilepsies with the common features of early onset epilepsy (before the age of 3 years) and developmental problems such as psychomotor delay or regression [1]. Within this group of early onset epilepsies, the term “epileptic encephalopathy” is often used in the broader sense of severe epilepsies accompanied by developmental problems. However, according to the definition given by the ILAE, the term “epileptic encephalopathy” should be reserved to situations in which the epilepsy itself causes ongoing cognitive deficits. Recent studies revealed that the activity of the epilepsy is often unrelated to the severity level of the developmental disturbance. In these cases, the main pathophysiological component might be the genetic defect itself leading to epilepsy as well as to disturbances of brain development. Table 1 summarizes the main forms of EE, the most common underlying genes and their relevance for genetic counselling and/or treatment. The different EE syndromes are defined by the onset of seizures, semiology (seizure types) and EEG characteristics. The spectrum includes well known entities such as Ohtahara syndrome, West syndrome, Dravet syndrome and Lennox-Gastaut syndrome as well as less defined clinical pictures (unclassified EE). Figure 2 shows an overview of the main syndromes and the respective genes sorted by the age of onset.
Ohtahara syndrome (OS) is characterized by frequent tonic spasms starting in the first days and weeks of life which are highly pharmaco-resistant. Other seizure types can occur such as focal motor, hemiclonic or generalized tonic-clonic seizures. The EEG shows a characteristic burst suppression pattern (Figure 3). Most patients have developmental problems such as severe global developmental delay and intellectual disability and the mortality rate is high. In 75% of patients, the epilepsy converts into West syndrome, and about 12% of patients present with Lennox-Gastaut syndrome later in life [81].
West syndrome (infantile spasms, IS) starts between 3 and 12 months of age with clustered and frequent infantile spasms, developmental delay, and the characteristic EEG pattern of hypsarrhythmia. It is defined by high amplitude slow waves combined with multifocal irregular epileptic potentials (Figure 3). The criteria (i) early onset, (ii) other seizures types than spasms and (iii) a recurrence of seizures after seizure freedom are negative predicting factors. In contrast, normal MRI and fast responsiveness to therapy are predictive factors for positive outcome [82]. First line therapeutic options are vigabatrin and steroids.
All these syndromes are genetically heterogeneous since several genes were described for each of them (Table 1). OS and IS are genetically overlapping as mutations in genes like ARX, SCN2A, STXBP1 and CDKL5 were found in both syndromes [83,84]. ARX (aristalessrelated homeobox protein) is a transcription factor involved in brain development [85]. ARX mutations are also found in patients with a lissencephaly, a severe disturbance of cortical integrity [86]. Several genes affected in early onset epilepsies and epileptic encephalopathies are involved in the (pre-)synaptic vesicle cycle. Examples are STXBP1 (encoding for syntaxin binding protein 1), STX1B and DNM1 [for overview see 87]. CDKL5 is involved in RNA processing and interacts with MeCP2 by mediating MeCP2 phosphorylation [88,89). Malignant migrating partial seizures in infancy (MMPSI) is a highly pharmaco-resistant epilepsy syndrome starting before 6 months of age. Polymorphic seizures with migrating ictal EEG discharges during the seizures are characteristic for the syndrome. A plateau or regression in psychomotor development is a defining attribute [90]. An important gene for MMPSI is KCNT1 [91] which is coding for a sodium-activated potassium channel. The mutations lead to a gain of function which can be reversed by the potassium channel blocker quinidine that has been reported to be useful in single patients [92,93].
Dravet syndrome (previously known as severe myoclonic epilepsy of infancy, SMEI) is characterized by prolonged and frequent febrile seizures in the first year of life. Later on, patients develop afebrile hemi- or generalized clonic or tonic-clonic seizures, myoclonic seizures and absences, as well as simple and complex partial seizures. Frequently, obtundation status occurs. Cognitive deterioration appears in early childhood. The epilepsy is resistant to pharmacotherapy in most cases [94]. The major gene in this syndrome as well as the most common epilepsy gene in general is SCN1A, encoding a sodium channel alphasubunit [95]. Functional analysis using heterologous expression systems revealed a predominant loss of function mechanism in inhibitory neurons leading to system hyperexcitability [96]. Genetic testing results are relevant to treatment decisions as sodium channel blockers can aggravate seizure frequency in some Dravet patients [97] while specific orphan drugs such as stiripentol can be used. Although SCN1A mutations occur de novo in most patients, mosaic status in parents is possible and should be ruled out carefully (see above and 37].
Patients with MAE (Doose syndrome) present between ages 1 to 3 years with generalized tonic-clonic, myoclonic and atonic seizures as well as absences. In many patients, the genetic background of the disease remains unknown. However, mutations in the GABA transporter gene SLC6A1 are found in about 4% of cases [98]. Mutations in SLC2A1 are rare but identification of these patients allows for a specific therapy, i.e. the ketogenic diet [99]. Lennox-Gastaut syndrome (LGS) is characterized by polymorphic seizures combined with developmental delay or regression with onset between 3 to 5 years of age. Frequently, the disease starts as Ohtahara or West syndrome and evolves into Lennox-Gastaux syndrome. Seizure types characterizing LGS are atypical absences, tonic, atonic or generalized tonicclonic seizures including (tonic) drop attacks with high risk for injuries. EEG characteristics are slow spike wave complexes and polyspikes (Figure 3). LGS is very heterogeneous since causing mutations were described in a bunch of genes such as SCN1A, STXBP1, SCN2A and CDKL5, especially when the disease starts in early childhood (see above) [100].
Common metabolic forms of early infantile epileptic encephalopathies comprise Glut1 deficiency and pyridoxine-dependent epilepsies. Glut1-Deficiency syndrome starts in the first few months of age with clusters of dyscognitive seizures and non-convulsive status epilepticus predominantly in fasting state e.g. just before to breakfast. The children development a severe psychomotor retardation, dystonic features and ataxia (Seidner) [101]. The spectrum of glucose transporter type 1, the glucose transporter of the blood-brainbarrier, associated syndromes is broad since also paroxysmal exercise induced movement disorder (PED), childhood absence epilepsy (CAE) and early onset absence epilepsy (EOAE) starting before 3 years of age were found to be caused by mutations in SLC2A1 coding for Glut1 [15,51,102]. With the ketogenic diet, which bypasses the defect in glucose metabolism, a specific therapy is available.
Vitamin B6 (pyridoxine) dependent epilepsies typically start in the first days of life or are even recognized as intrauterine seizures during pregnancy. The seizures are highly pharmacoresistant. Burst suppression patterns and hypsarrhythmia in EEG have been described (Mills) [97]. Affected children show global developmental delay. Sometimes, a history of perinatal problems such as premature delivery or asphyxia pretends symptomatic epilepsy. Biallelic mutations in ALDH7A1 (coding for the alpha-aminoadipic semialdehyde dehydrogenase antiquitin) and more rarely PNPO (coding for pyridoxamine phosphate oxidase) involved in the pyridoxin metabolism are responsible for these metabolic epilepsies and an early therapy with pyridoxine (in antiquitin deficiency) or pyridoxal-5-phosphate (in pyridoxamine phosphate-oxidase deficiency) should be started [103].
There are many children who present with non-specific phenotypes rendering targeted genetic testing impossible. In this context, two additional genes should be mentioned since the detection of mutations in these genes might have implications on therapy. Mutations were found in in the potassium channel gene KCNA2 in a Dravet-like phenotype [104] and mutations in the NMDA glutamate receptor genes GRIN2A and GRIN2B are found in patients with non-specific epileptic encephalopathies or epilepsy-aphasia-spectrum disorders. Pathological effects of gain-of-function mutations might be specifically blocked by memantine [18,105].
Last but not least CNVs were described in several forms of EE in up to 5% of cases including specific phenotypes such as LGS as well as unclassified EE [106].
Genetic testing in patients with EIEE and severe epilepsies in infancy: For all subtypes of EE genetic testing is highly recommended since a positive result avoids further diagnostics, allows for prognostic estimations and might have implications on therapeutic decisions. In this group of epilepsies, many private and de novo mutations are found. Few genes follow autosomal-recessive inheritance. Due to phenotypic and genotypic heterogeneity, a gene panel approach combined with a CNV analysis is recommended. In few cases, e.g. in typical Dravet syndrome or pyridoxine-responsive epilepsy, a targeted gene analysis will be effective. Prior to initiation of genetic testing as well as in cases with positive results, genetic counselling should be offered to parents.
Genetic testing is recommended in all forms of epileptic encephalopathies since it has important influence in patient`s management. The genetic result helps to define a diagnosis, can spare further diagnostics, give advice for prognosis and genetic counseling and may influence therapy decisions. Prior to genetic testing a detailed genetic counseling is necessary to prevent negative socio-psychological effects in the affected families and unnecessary health costs. To date, only in a few of the common forms of generalized and focal epilepsies genetic testing should be performed as a routine diagnostic step, since major genes and consequences for clinical management are missing in most cases.

(責任編輯:佳學基因)
頂一下
(0)
0%
踩一下
(0)
0%
推薦內(nèi)容:
來了,就說兩句!
請自覺遵守互聯(lián)網(wǎng)相關的政策法規(guī),嚴禁發(fā)布色情、暴力、反動的言論。
評價:
表情:
用戶名: 驗證碼: 點擊我更換圖片

Copyright © 2013-2033 網(wǎng)站由佳學基因醫(yī)學技術(北京)有限公司,湖北佳學基因醫(yī)學檢驗實驗室有限公司所有 京ICP備16057506號-1;鄂ICP備2021017120號-1

設計制作 基因解碼基因檢測信息技術部